
SIMD Programming in GNU Radio: Maintainable
and User-Friendly Algorithm Optimization with

VOLK
Thomas W. Rondeau

GNU Radio
Email: tom@trondeau.com

Nicholas McCarthy
University of Maryland

Email: namccart@gmail.com

Timothy O’Shea
University of Maryland
Email: oshea@umd.edu

Abstract—We present VOLK as an easy to use single-
instruction multiple-data (SIMD) math library and as a stru cture
for open-source development of SIMD code. VOLK is the Vector-
Optimized Library of Kernels and provides an abstraction layer
for hardware-specific SIMD operations. The abstraction layer
aids SIMD code construction, enforces a common interface for
library development, and complements data-streaming computa-
tion models common in software radio development.

We discuss how VOLK is used in GNU Radio to provide
significant speed-up to signal processing blocks, and we survey
current programming models for incorporating VOLK within
those blocks. Results for different blocks are shown.

I. I NTRODUCTION

I wanna go fast!
—Ricky Bobby

While general purpose processors (GPP) have included
vector instruction capabilities for a number of years, their use
is still esoteric and difficult to generalize. We present here the
Vector-Optimized Library of Kernels (VOLK) project from
GNU Radio that provides a simple to use, extensible, and
architecture-independent programming tool to enable vector-
ized mathematical operations.

These GPP vector extensions are known as SIMD for single-
instruction, multiple-data. SIMD extensions generally involve
a specialezed set of wide registers and an extended set of
instructions to manipulate data within these registers. Typical
implementations have used 128-bit registers, although x86pro-
cessors first used 64-bit registers, and current versions use 256.
A 128-bit SIMD register can hold four single-precision floats,
eight shorts, or sixteen bytes. Families of processors fromthe
same vendor and processor families from different vendors
can feature different hardware SIMD implementations, and
corresponding instruction set extensions can differ between
generations or from one company to another.

Although compilers like GCC [5] and Intel’s ICC try to
vectorize when they can, it is not an easily solved problem, es-
pecially for more complicated math functions. Further, access
to SIMD registers generally requires low-level programming
tools, and assembly language is still often used. For many
processors, there existintrinsics, which essentially expose
individual assembly instructions to C language compilers.But
there exists a tension between the universality of C code
and hardware optimization at the SIMD level. With libraries,

instruction sets, and architectures differing on a per-processor
basis, it becomes difficult to program and manage code written
to access SIMD instructions, especially when portable codeis
the aim. Even acknowledging differences on a per-processor
basis does not go far enough. SIMD code enables processes
to run faster or more efficiently, but code optimization is a
run-time problem. The same processor running the same code
within different memory structures or at different loads can
show different efficiency properties.

The VOLK library is an abstraction designed to fix these
problems. It provides a platform-agnostic interface called a
kernel for each conceptual execution unit subject to SIMD
vectorization. Underneath, VOLK has a set ofproto-kernels
designed for particular platforms, SIMD architecture versions,
or run-time conditions. The VOLK library compiles all pos-
sible proto-kernels supported by the compiler toolchain. At
run-time, during the first call to an abstract kernel, VOLK
resolves the kernel to a specific proto-kernel. VOLK tests the
run-time platform for its capabilities to ensure the resolved
proto-kernel will run correctly and employs a dynamic rank-
ordering to select the best possible proto-kernel. The process of
proto-kernel resolution is critical to the functionality of VOLK
and will feature in following sections.

This paper first describes SIMD programming in more detail
to expose both benefits and challenges. We discuss the design
of VOLK, examining platform independence, extensibility,and
optimized kernel selection. We study how best to integrate
VOLK and GNU Radio, quantizing observed benefits. The
paper will conclude with a discussion on future improvements
to VOLK, both speculative and in-production.

II. BASICS OFSIMD

SIMD is a common computer instruction architecture fea-
ture provided to enable efficient vector operations. Avector
operationis the simultaneous application of a single operation
to each element in a vector of data. In principle, using vector
operations results in significant speedups versus using equiva-
lent scalar operations: performing a vector operation on a four-
long vector should take one-quarter as much time and energy
as performing four different scalar operations to achieve the
same purpose. The x86 (Intel and AMD), PowerPC, and ARM
GPP architectures all offer SIMD variants. When Intel released

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

101

MMX (multimedia extension), its initial GPP SIMD architec-
ture feature, the company signaled an intention to target SIMD
toward multimedia and graphics processing applications [4].
Such applications often translate easily to signal processing
applications. Both application classes feature high-ratedata
streaming.

We provide here a quick example using SSE to per-
form a vector multiplication with two input vectors of
floating point values. In VOLK, this is the proto-kernel
volk 32f x2 multiply 32f a sse.

1 s t a t i c i n l i n e vo id
v o l k 3 2 f x 2 m u l t i p l y 3 2 f a s s e (

f l o a t ∗ cVector , cons t f l o a t∗ aVector ,
cons t f l o a t∗ bVector , unsigned i n t num poin ts)

{
6 unsigned i n t number = 0 ;

cons t unsigned i n t q u a r t e r P o i n t s = numpoin ts / 4 ;
f l o a t ∗ c P t r = cVec to r ;
cons t f l o a t∗ a P t r = aVec to r ;
cons t f l o a t∗ b P t r = bVector ;

11 m128 aVal , bVal , cVal ;
f o r (; number < q u a r t e r P o i n t s ; number ++){

aVal = mm load ps (a P t r) ;
bVal = mm load ps (b P t r) ;
cVal = mm mul ps (aVal , bVal) ;

16 mm store ps (cP t r , cVal) ;
a P t r += 4 ; b P t r += 4 ; c P t r += 4 ;

}

number = q u a r t e r P o i n t s∗ 4 ;
21 f o r (; number < num poin ts ; number ++){

∗ c P t r ++ = (∗ a P t r ++) ∗ (∗ b P t r ++) ;
}

}

In this code, the vectorsaVector andbVector each contain
num points floats. They are multiplied together and produce
output values incVector. In each round of the for loop,
four floats from each of the input vectors are loaded into
SIMD registers and then multiplied together. Themm mul ps
performs the four floating point multiplications at the same
time, and each of the vector pointers then increments by four
float items, or sixteen bytes, so that the next round uses four
new float pairs. In total, the loop runs four times fewer than
an equivalent, non-vectorized loop.

A final for loop at the end cleans up any remaining data
items if num points is not a multiple of four, so this loop
multiplies one, two, or three extra float pairs to ensure the
entire vector is processed.

This example showcases the use of C intrinsics to access
SIMD functionality. Most VOLK proto-kernels feature intrin-
sics as opposed to in-line assembly for two reasons. The
first reason is simplicity and decreased development time.
Intrinsics leave register mapping to the compiler and reduce
the set of required technologies for SIMD programming. The
second reason is portable efficiency. Not all code optimization
challenges are equal to the compiler. C compilers often do
not optimally leverage SIMD architectures, as our results for
specific GNU Radio blocks show. They can, on the other
hand, handle register mapping, software pipelining, and loop
unrolling quite well. Performance benchmarks from the Spiral
Viterbi project demonstrate this phenomenon. Across a range

Fig. 1. Chart of when Intel introduced its various versions of SIMD
architectures.

of Viterbi Algorithm implementations, code auto-generated
using SSE intrinsics compares at least comparably and in
most cases better than Phil Karn’s hand-optimized mixture of
intrinsics and assembly [1]. Compilers can solve these issues
differently for different hardware. Hand-optimized assembly
is static from machine to machine.

SIMD programming can provide dramatic performance
benefits, but developers often choose not to support SIMD
enhancements. Practically speaking, it can be difficult to code
using SIMD extensions where the project in question assumes
a team of developers and wants to produce cross-platform
compatible source code. Intrinsics help abstract away some
machine-specific differences, but intrinsics do not abstract to
the point where two code contributors running computers from
different decades with different compiler versions can easily
cooperate.

Vendors use architectures with critical differences. Intel has
a range of architecture families ranging from MMX to SSE
and AVX. AMD produced chips with a distinct architecture
called 3DNow!, but has since dropped those extensions in
an effort to harmonize SIMD across x86. PowerPC has the
Altivec instruction set, and ARM uses the NEON extensions.

Within one vendor’s product line, hardware and software
evolves. Figure 1 depicts various generations of Intel’s SIMD
architecture family. Generally, all newer processors still con-
tain older architectures for backwards compatibility, butcode
written for newer architectures will not work on older pro-
cessors. Barriers to compatibility can easily relegate SIMD
programming to projects for which efficiency is paramount.
Nor is compatibility the only barrier to using SIMD for
software projects.

SIMD code can place demands for memory management
techniques on the code surrounding it. Common to all the
SIMD architectures previously mentioned are some restrictions
on loading (putting samples into the registers) and storing
(moving samples out of the registers). Many architectures,

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

102

Intel’s x86 among them, have specific memory alignment
requirements for vector loads and vector stores. For SSE
architectures, true vector loads and stores require16-byte
alignment, and unaligned data management requires calls to
substantially less efficient load and store instructions. At-
tempting to use an aligned load with unaligned data can
result in errors and unexpected behavior. A data-streaming
programming model must assume many processes will be
bound by memory bandwidth and not computation-bound. In
order really to expose the efficiencies of SIMD architectures
to an SDR programming model, the model itself must take the
responsibility to coordinate memory alignment.

Various attempts have been made to solve the problem
of generalizing SIMD programming. Intel’s compiler (ICC)
and the Intel Performance Primitives (IPP) and Math Kernel
Library (MKL) do a good job of hiding the SIMD optimiza-
tions from the users, but these approaches only target Intel
processors. One of the more accessible and successful tools
in this area is ORC (the OIL runtime compiler) [3]. VOLK
is actually capable of using ORC to create proto-kernels, but
that is beyond the scope of this paper.

III. VOLK P ROGRAMMING MODEL

A. Coding

In §I, we describe VOLK both as a library of kernels and
as an abstraction layer designed to solve problems inherentto
open source development with SIMD code. The description of
SIMD architecture in§II identifies code compatibility as one
such problem. Open source projects must support the hardware
their communities use, and that hardware varies in age and
ability. Beyond hardware compatibility, a successful abstrac-
tion layer must enable meaningful collaboration. Open source
development relies heavily on integrating various solutions
from users working on different aspects of multiple problems.
Communities can fracture, and competition can yield benefits,
but freedom in software means the ability to cull from the best
available ideas. In this section, we tour the particulars ofthe
VOLK abstraction layer with an eye toward these stated goals.

VOLK defines three different conceptual object types: ker-
nels, archs, and machines. In§I, we introduced the kernel and
the proto-kernel. A kernel corresponds to a file containing
source code for its proto-kernels. The naming of that file
follows a structure enforced by regular expressions in the
VOLK build system:

volk input-fingerprint function-name
output-fingerprint.h.

The input-fingerprint is an underscore-separated list of argu-
ment types,[s]BT , and argument counts, xN . For an argument
type, the optional letter s identifies a scalar argument. Bit-
countB is one of64, 32, 16, or 8, and indicates item size for
the corresponding argument. Type,T , is one of i for fixed-
point integers,u for unsigned fixed-point integers,f for floats,
ic for interleaved fixed-point complexes, orfc for interleaved
float complexes. An argument count, xN for N > 1 an integer,
always follows an argument type descriptor when the kernel

takesN arguments of the same type. If the kernel has an input
vector argument and operates in place, the coder must list
that argument in the input-fingerprint, and scalar arguments
follow vector arguments in order. The function-name is any
string describing kernel functionality and must not contain a
substring matching the argument type template. The output-
fingerprint follows the same structure as the input-fingerprint
but describes output arguments rather than input arguments.

A VOLK kernel can have any number of proto-kernels.
A proto-kernel is a static inline function. Declaration and
definition of the proto-kernels allow for a standard, portable
interface to the individual proto-kernels for use on systems
without C++ compilation and shared objects. Proto-kernels
follow the naming structure

volk input-fingerprint function-name
output-fingerprintalignment-flagtag,

where tag is the descriptor for the particular proto-kernel. The
tag need not refer to any SIMD architecture, though often it
does. Each of a kernel’s proto-kernels must have a unique
tag. The alignmentflaga is for a kernel expecting boundary-
alignment ofu for a kernel with no alignment expectations. An
alignment flag is required for all but two special-case proto-
kernels: one with taggenericand another with tagdispather.
A proto-kernel argument list positions the output arguments
described in the output-fingerprint first, followed by those
arguments described in the input-fingerprint. A final argument,
unsigned int numpoints, closes the list and holds the value
of the number of points in the longest input vector. Within
the function definition, the coder is free to code. VOLK
developers have not yet found it necessary to write proto-
kernels incompatible with a ANSI C compilation. Since C++
is probably a more common environment for VOLK code,
“volk complex.h” provides an abstraction bridging the chasm
between float complex types in C and C++.

Surrounding each proto-kernel is an #ifdef compiler direc-
tive with argument

LV HAVE ARCH1 && LV HAVE ARCH2 &&

· · · && LV HAVE ARCHN ,
(1)

whereARCHJ is a VOLK arch object for eachJ .
An arch is an abstraction for any hardware-specific property.

To GCC, an arch corresponds roughly to one or several-m
flags such as-msse3. To CPU hardware, an arch describes
physical silicon or firmware attributes enabling, for instance,
the CPU to execute machine code for a particular assembly
instruction.

An arch is defined by its entry in an XML table,
“archs.xml.” EachARCH in the table corresponds to a
VOLK macro LV HAVE ARCH . The XML table indexes
information CMake [2] can use to determine whether the
project compiler can generate code specific toARCH . Each
arch entry may contain flag subentries for the project compiler,
and the coder can assume all compiler flags are set within
the directive #ifdef LV HAVE ARCH . For example, within
#ifdef LV HAVE SSE3 a coder may assume the flag-msse3
is set and include “pmmintrin.h.”

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

103

The macro LV HAVE GENERIC is always set to1. The
coder uses this macro unaccompanied by any other to denote
that the enclosed code contains no dependence on a VOLK
arch. A generic proto-kernelis one written inside the direc-
tive #ifdef LV HAVE GENERIC. Intuitively, a generic proto-
kernel is a universally available fall-back proto-kernel.Each
kernel must contain one (or more!) generic proto-kernels. In
addition, for reasons made clear in§III-C, one unaligned proto-
kernel must have the tag “generic.” In defining the concept of
the generic proto-kernel, it is important to distinguish source-
code universality from compiled-code universality. Within
VOLK, a generic proto-kernel can compile to assembly code
that is very much not universal. In fact, the compiler can
promote any proto-kernel using compiler flags for VOLK
archs unrequired by the source code. To address how VOLK
handles promotion requires a discussion of VOLK machines
and library compilation.

B. Compiling

A VOLK machine is an abstraction for a processor. To
CMake, a machine corresponds roughly to a list of compiler
flags used to compile each VOLK kernel. To CPU hardware,
a machine is a full description of the various architecturaland
software attributes required for a processor to run binaries
within a shared object. The machine set is defined in “ma-
chines.xml,” and from this perspective, a machine essentially
boils down to a list of archs. How VOLK compiles comes
down to resolving any tension between what the system and
compiler can do on one hand and what each machine definition
asks the system and compiler to do on the other hand.

At compile time, CMake tests each VOLK arch in
“archs.xml” by compiling a dummy program using the flag
selection in the XML entry for that arch. VOLK exposes
the arch list to CMake via a Python utility which parses
the XML and holds intermediate Python class representations
of the various archs. If a follow-on test is required, VOLK
runs the follow-on test and overrules the result of the first
test. For example, current versions of GCC can handle both
the −m64 and the−m32 flags separately. A Linux install
might include development libraries for one or the other
flag, not both. A follow-on test selects one or the other of
the flags according to the operating system. (The user can
override this behavior and cross-compile but must install both
development libraries beforehand.) A list,available archs, of
available archs results. CMake then tests each VOLK machine.
VOLK exposes the machine list to CMake via a Python utility
which parses the XML and holds intermediate Python class
representations of the various machines. Each machine is a
list, machine archs, of archs. If

available archs ∩machine archs = machine archs,

then the compiler has what it needs to compile a library for the
machine. A listavailable machines, of available machines
results.

A VOLK Python utility parses each kernel definition file
and builds a dictionary of intermediate Python kernel class

representations. In particular, a kernel class representation
holds onto arch dependency information and identification
tags for each of the proto-kernels. The arch dependency list
tagdeps for a given kernel is

(ARCH1, ARCH2, · · · , ARCHN) , (2)

using definitions from (1) in§III-A. VOLK auto-generates
C source code for each kernel using C code templates and
a Python utility. Each of a kernel’s proto-kernels shares
an argument and return value fingerprint, and VOLK type-
defs a kernel function pointer using this fingerprint. VOLK
generates in “volk.h” three distinct kernel object interface
declarations with this fingerprint type for every kernel. Specif-
ically, for each kernel “volkkernelname.h,” VOLK furnishes
volk kernelnamea, volk kernelnameu and volk kernelname
as interfaces to that kernel. Volk filters definitions for the
interfaces through a call toget machine(), and this filtra-
tion is the primary subject of§III-C. The return value of
get machine() is a volk machine struct. The volkmachine
struct definition itself is templated per-kernel such that the re-
sulting struct contains, among other information, each kernel’s
impl names, impl alignment, n impls, and impls. The
string arrayimpl names holds the tag names for the kernel’s
proto-kernels. The function pointer arrayimpls holds point-
ers to the proto-kernels themselves, andn impls holds the
number of proto-kernels in the arrayimpls. The boolean array
impl alignment indicates whether the proto-kernels inimpls

make alignment assumptions. The index of tagt in the array
impl names corresponds to the index of the proto-kernel
with tag t in the arrayimpls and the index of the alignment
requirements for that proto-kernel, allowing for lookups.Of
course,n impls, impl names, impl alignment andimpls

all differ on a per-machine basis.
VOLK localizes most machine-specific code

variation in templated code generated from the file
“volk machinexxx.tmpl.c.” By restricting this code
generation appropriately, CMake ensures VOLK will
compile code only for those machines the compiler can
handle. (VOLK generates some other machine-specific code
from “volk machines.tmpl.h” and “volkmachines.tmpl.c.”
The resulting code relates to code generated from
“volk machinexxx.tmpl.c.”) CMake loops over only
available machines when generating code from this file
and produces a file defining avolk machine struct with
each iteration. While generating code from this file, a Python
utility function selectively sets #define LVHAVE ARCH

for each VOLK archARCH in accordance with the current
machine, and any machine inavailable machines will set
only archs available to the compiler. Code generated from this
template forms a sole point of contact between user-generated
code in kernel definition files and VOLK shared objects.
CMake generates one shared object per machine, applying
the compiler flags corresponding to that machine. The objects
linked into each library are identical with the exception of
the objects generated from the “volkmachinexxx.tmpl.c”
template. Each library links only one unique such object.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

104

The compiler flags applied to generate any one shared object
apply equally to all code generated for that shared object. If
the machine allows for SSE3 instructions but a proto-kernel
requires only SSE2 instructions, the compiler has free reign to
generate assembly translating from the proto-kernel’s original
SSE2 instructions to SSE3 instructions. This promotion effect
observed in§III-A is crucial to VOLK taking full advantage of
optimizing compilers. Developers write VOLK proto-kernels
in order to gain efficiency. We have described compilation
such that for each kernel, there are multiple proto-kernel
definitions competing for access to kernel interface function
pointer objects. VOLK must allow this competition to remain
fair. Within the restrictions imposed by a machine definition,
the compiler should do everything it can to make generic
versions as efficient as possible. VOLK establishes a situation
such that hand-coding complements compiler optimization
rather than substituting for it.

C. Runtime

VOLK runtime behavior defines the competition for the
kernel function pointers among the proto-kernels, and this
competition establishes a situation such that differentlyhand-
coded and compiled proto-kernels complement one another
rather than displace one another. In§III-B, we mention the
kernel definitions filter through a call toget machine().
In fact, they filter through two calls:get machine() and
volk rank archs(). The first call implements runtime selec-
tion from among the libraries generated at compile time. The
second implements runtime selection from among a kernel’s
proto-kernel set. We examine the two separately.

The ordering of the archs in “archs.xml” is not arbitrary.
CMake defines a macro, LVARCH for each VOLKARCH

according to the order ofARCH ’s appearance in the file.
Each arch contains acheck entry referring to a runtime

method determining whether a processor can run that arch.
The runtime checks generated from “volkcpu.tmpl.c”’ use
check entry definitions specifying calls to utilities likecpuid or
tests for register bits set in a standard way across architecture
families to indicate functionality (x86 chips from AMD and
Intel implement such an identification protocol).

In principle, the set of machines maps one-to-one intoZ2
n

where n is the number of archs: each machine either has
or does not have each arch. We assign to each machine a
unique integer via a simple inclusionφ from Z2

n to Z. The
LV ARCHth bit in φ(m) is 1 for a machinem if and only
if m has the archARCH . The ordering on ints now reflects
our intentional ordering of archs in “archs.xml.” Machinem
outranks machinel if the most valuable arch for which the
two machines differ belongs to machinem and notl (this is
known asdictionary order).

With the first call to get machine(), VOLK performs
the appropriate runtime check for all archs and calls
volk get lvarch() to find φ(I) whereI is the runtime ma-
chine. VOLK then defineŝm ≡ argmaxT (φ(m)) where

T = {m ∈ available machines :~φ(I)&φ(m) = 0}.

(The symbols~ and & take their usual meanings as bit-
wise operators.) To express this formula simply, VOLK will
not select a machine if the hardware cannot run it, but the
best ranking machine wins out otherwise. The initial call
to get machine() sets a pointer tôm, but subsequent calls
simply return this pointer.

To resolve the kernel interfaces volkkernelnamea and
volk kernelnameu, VOLK determines the best avail-
able proto-kernels among those in̂m via a call to
volk rank archs(). This function expresses a default be-
havior and an ability to override that behavior via settings
in a preferences file. The default behavior plays out much
like the initial call to get machine(). The volk machine

struct at addresŝm has an array of ints,arch defs, populated
with φ(pi) where 0 ≤ i ≤ n impls and pi is the sub-
machine corresponding to the proto-kernel identified by the
tagimpl names[i]. A sub-machine, like a machine, is a list of
archs. Unlike a machine, a sub-machine does not characterize a
processor. A sub-machine characterizes hardware requirements
for a proto-kernel. The sub-machine corresponding to a proto-
kernel is defined to be the listtagdeps: (2), §III-B. VOLK
definesp̂ ≡ argmaxS(φ(pi)) where

S = {i ∈ [0, n impls] :~φ(m̂)&φ(pi) = 0}.

The initial call to the kernel sets volkkernelnamea to p̂, and
subsequent calls return this pointer.

To define volk kernelnameu, VOLK further filters the set
S to include only aligned proto-kernel indices. If

S(u) = {i ∈ S : impl alignment(i) = false, }

then for p̂(u) = argmaxS(u)(φ(pi)), the initial call to the
kernel sets volkkernelnameu to p̂(u).

Code specifying the override behavior for
volk rank archs() resides in “volk prefs.c” and
“volk prefs.h” and relies on setting in a preferences
file. What populates this file? In principal, anything can
populate the file, making VOLK runtime behavior user-
accessible. In practice, VOLK offers a utility,volk profile,
for assessing runtime-accessible proto-kernels. This utility
shares a code base with atest all, a quality assurance
utility. Both utilities rely on code auto-generated following
the kernel naming structure. The files “qautils.h” and
“qa utils.c” determing auto-generation behavior. The
header file defines three macros: VOLKRUN TESTS,
VOLK PROFILE, and VOLKPUPPETPROFILE.
Essentially, VOLK RUN TESTS loads arrays from the
input-fingerprint with random data, runs the kernel, and tests
data in the output arrays against results from the proto-kernel
with tag “generic.” VOLK PROFILE times each runtime-
accessible proto-kernel, writing results to the preferences
file.

The macros support only a limited number of fingerprint
variations: fingerprints with a combined number of up to
4 vector arguments and up to only one scalar argument (a
float or a float complex). All vector arguments must have the
same length. The user can control a tolerance with which to

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

105

compare results, the value of the scalar used in the function
call, the length of the vector arguments, and the number of
iterations to run. In order for VOLK to test a user-defined
kernel, the user must add a call to the VOLKRUN TESTS
macro within the file “testqa.cc.” In order for VOLK to
profile a user-defined kernel, the user must add a call to
the VOLK PROFILE or VOLK PUPPETPROFILE macro
within the file “volk profile.cc.”

The macro fingerprint restrictions necessitate the
VOLK PUPPETPROFILE macro and the concept
of puppet kernels. VOLKPUPPETPROFILE works
identically to VOLK PROFILE, with one exception.
VOLK PROFILE takes as an argument the name of a kernel
to be profiled, and profiling results apply to that kernel.
VOLK PUPPETPROFILE takes two name arguments: a
kernel to be profiled (thepuppet) and a kernel to which the
profiling results apply (thepuppet master). When a coder
writes a kernel that does not conform to the fingerprint
restrictions, the coder can use puppets to access equivalent
auto-generated functionality. For instance, if a coder writes
a kernel with vector arguments but also wants to pass a
scalar value by pointer in order to recover that value on
completion of the kernel call, the coder has broken the
fingerprint assumptions. The auto-generator will interpret
any pointer argument as a vector argument, and all vector
arguments must have the same length. The coder writes a
puppet variant for the kernel. Apuppet variantis a kernel
with a compliant fingerprint such that puppet proto-kernels
call corresponding puppet master proto-kernel’s directly. The
coder manages delinquent arguments manually such that
running the puppet proto-kernels under VOLKRUN TESTS
provides meaningful results. The coder can add a call to the
puppet as a replacement for a call to the puppet master in
“testqa.cc,” but in order for the runtime selection mechanism
to take note of profiling results for a puppet, the coder needs
to specify the puppet/puppet master relationship explicitly by
a call to VOLK PUPPETPROFILE.

The volk profile utility harmonizes competition among
competing proto-kernels. Code written meticulously to avoid
cache misses for a particular, older-generation chip can co-
exist with code written quickly to leverage new hardware
instructions. If yesterday, code written to leverage SIMD
instructions explicitly ran faster than code written generically,
but today that same generic code runs faster due to compiler
advancements, nothing is lost. Thevolk profile utility is
a fair judge, and unused proto-kernels can lie around like
unexpressed genes, waiting for their day in the sun.

We have described resolution for only two of the three
interfaces provided for each VOLK kernel. In addition
to volk kernelnamea and volk kernelnameu, VOLK also
provides volk kernelname. This final interface uses the
VOLK dispatcher to arbitrate between volkkernelnamea
and volk kernelnameu at runtime. By default, VOLK auto-
generates a proto-kernel with tag “dispatcher.” The dispatcher
inserts a check before each kernel execution and determines
whether the input and output buffers handed to the kernel will

allow for execution of the aligned interface. If not, the dis-
patcher executes the unaligned interface. The coder can over-
ride the default behavior of the dispatcher by defining a proto-
kernel within the directive #ifdef LVHAVE DISPATCHER
using the tag “dispatcher.” Within this directive the coder
can use volkkernelnamea and volk kernelnameu with im-
pugnity. The coder can also use volkanother kernelnamea,
volk another kernelnameu, and volk another kernelname
with impugnity, providing a convenient mechanism for devel-
oping meta-kernels(kernels calling code from other kernels).
The dispatcher proto-kernel must match the output of the
generic proto-kernel, but this restriction is essentiallythe only
one.

IV. I NTEGRATING VOLK INTO GNU RADIO

The VOLK dispatcher ensures correctness across all align-
ment situations at runtime, but correctness is not the exclusive
goal of a vector-optimized library. VOLK goes a long way
toward selecting optimal code on a per-situation basis, but
it does nothing to create optimal situations. GNU Radio
is an implementation for a particular computational model,
and the specifics of that implementation create the runtime
situations exposed to the VOLK library. We discuss some
of the specifics of that implementation and trade-offs behind
different approaches to using VOLK within the GNU Radio
code base.

A. Alignment

GNU Radio uses circular buffers to pass data between signal
processing blocks. The dynamic scheduler keeps track of the
read and write pointers of each buffer to determine how much
data is available for a block’s input and how much space is
available for a block to write its output. Each call to a block
requires a set of calculations to determine how many items
the block may handle and produce.

GNU Radio creates these buffers on page boundaries. Due
to buffer page-alignment we know GNU Radio blocks start life
with input and output buffers aligned to SIMD architecture
requirements. Unfortunately, due to the dynamic nature of
the scheduler and the dynamic nature of sample arrival into
flowgraphs, we cannot guaranteea priori any call to a block’s
work function should continue to respect byte alignment
beyond the first call. And so we have to be more clever with
our scheduling algorithms.

It is relatively trivial to force the scheduler to allow blocks
to produce anoutput multiple of items. This value is an
integer multiple such that each time a block is passed data,
the scheduler will always pass it data sufficient to produce
output-multiple-many items. Forcing an output multiple can
keep input and output buffers aligned to SIMD architecture
requirements. If we use single-precision floats as an example
with an SSE architecture, we need 4 floats per SSE register,
and so using and output multiple of 4 will preserve SIMD byte
alignment between calls to work.

In GNU Radio, there exists a call,set output multiple,
which lets the user tell the scheduler always to expect an out-

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

106

put multiple from a given block. VOLK can internally query
the machine architecture with a call tovolk get alignment

that returns a value for SIMD byte-alignment. The two tools
together allow GNU Radio to guarantee a SIMD byte align-
ment for the use of VOLK kernels in work functions.

Dynamic arrival times of samples through source blocks
poses a problem to this approach. If a GNU Radio application
receives packets of samples, and if those packets happen to
contain a number of samples incommensurate with the output
multiple requirement of the buffer, GNU Radio will simply
hold the remaining samples until there are enough to meet
alignment requirements. If there is a significant time difference
in the arrival of packets, we then pass significant latency on
to the system. GNU Radio waits patiently for another few
bytes in order to finish crunching on a packet that has already
arrived in its entirety. For example, using floats with SSE, we
need a multiple of4 floats, or16 bytes, to call the processing
block. If a packet arrives with516 bytes (or129 floats), we can
easily process the first512 bytes. The scheduler can break512
bytes into chunks that preserve SIMD byte-alignment, but the
packet has an inconvenient extra sample. GNU Radio will hold
this last sample of4 bytes stranded in a source block because
the source block will release floats only in multiples of4. If
a packet arrives every two seconds, the application finishes
our example packet only after the passage of two seconds
brings another packet and after the final byte traverses the
GNU Radio flowgraph. Faster though the individual processing
blocks might be, the entire system (for this example at least)
is slower.

GNU Radio has adopted an alternative strategy: rather than
force an output multiple to maintain alignment, we merely
requestthe alignment. In this model, a block requires an align-
ment value to call an aligned VOLK kernel, and we use the
volk get alignment mechanism combined with knowledge
of the block’s item size to derive a desired output multiple.The
block then avails itself of a new GNU Radio utility function:
set alignment. This function defines a block’s VOLK align-
ment requirement in items (i.e., floats, ints, complex, shorts,
etc.).

The scheduler interprets this alignment value as a goal but
not a requirement. When possible, the scheduler will produce
a number of items to the block meeting the alignment goal,
but the scheduler will pass a reduced number of items to the
block if it cannot satisfy the alignment goal.

After passing an unaligned buffer of data to the block, the
scheduler will then attempt to correct the problem as quickly
as possible to allow the block to resume aligned processing.

Two points regarding requested alignment deserve note.
First, we have introduced more logic into the scheduler to
test if there are enough samples for alignment and try to re-
establish alignment as quickly as possible. Meanwhile, the
blocks themselves must now make a branching statement
within the VOLK dispatcher to test for unalignment. All of
these steps add cycles to the operation of GNU Radio appli-
cations, and cycles can have critical performance implications.

The discussion falls to the subject of amortizing overhead.

Unlike the GNU Radio block’s work function, and unlike the
VOLK kernel, the scheduler is the unique entity within the
GNU Radio system best able to load-balance work functions
dynamically. The scheduler is, therefore, unique in its ability
to force overhead amortization. And the scheduler does so: it
tries to maximize the number of items passed to a block. When
shifting from aligned to to unaligned states, and when shifting
back again, the scheduler packs as many items as possible
into the input buffers of its blocks. It does not optimize for
running as much data as possible through aligned VOLK
kernels when shifting to or from an unaligned state. Early
attempts at integration showed the overhead of the extra cycles
required to maximize flow through the aligned VOLK kernels
and added buffer manipulation come at a far greater cost to
the system than falling back on an unaligned VOLK kernel.

Pushing overhead up the stack into the scheduler appears
optimal when an application leverages VOLK kernels. The
scheduler, unlike the kernel, can adapt to the overhead across
an entire application by scheduling larger granules of work.
On the other hand, pushing branching cycles up the stack
adds overhead even to applications without VOLK kernels
and without alignment concerns. This trade-off appears sound:
the applications likely to require efficiency are preciselythose
likely to need alignment; they are the applications likely to
leverage VOLK.

There are limits to the value of these unquantized argu-
ments. GNU Radio cannot afford to throw performance for
general applications under the bus in support of applications
taking maximum advantage of SIMD programming. Added
overhead to the scheduler is a concern. We examine conse-
quences to using VOLK in the next section, investigating this
overhead in particular.

B. Correctness

Part of VOLK’s principle contract with the users is the
assertion that all proto-kernels will behave the same on a
given machine. When developing a kernel, the generic proto-
kernel should be externally verified for correctness. Then,each
new proto-kernel is tested against the generic version to see if
they produce the same results. Comparisons are made to some
degree of accuracy since different processing engines may
produce minor numerical differences. The quality assurance
(QA) code can account for these differences, but the developer
must remain aware of them and understand to what level of
precision VOLK enforces its contract.

GNU Radio provides mechanisms for QA testing all of its
blocks, and these mechanisms allow the block designer to
account for variance in the VOLK QA mechanisms. The GNU
Radio block designer generally crafts sets of known inputs and
outputs to a block. The known outputs are compared against
the results of the GNU Radio block given the inputs. If they
match, again to a predetermined level of accuracy, the QA code
passes. We use this technique to ensure that the VOLK and
GNU Radio kernels produce the correct numbers and behave
properly under various conditions as outlined in the QA tests.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

107

C. Results

VOLK’s integration with GNU Radio is only partly com-
plete. Most of the simple signal processing blocks have been
converted to use VOLK, but many blocks requiring sophis-
ticated manipulation to expose parallelism or coordination
between multiple VOLK kernels remain untouched. In this
section, we present results achieved with some of these VOLK-
converted, simpler blocks. As a hedge against generalization,
we note most of the blocks discussed essentially call a VOLK
kernel and do nothing else within their work functions. Though
not necessarily typical of VOLK integration, this sort of block
deserves heightened attention. These are some of the most
heavily used blocks, and many of them are used toward the
top of flowgraphs where data rates are highest and efficiency
is most crucial.

The ambition set out for this paper is twofold: to introduce
in detail one implementation for a cross-platform SIMD design
environment and to demonstrate the subtleties behind properly
using that design environment for optimization of the GNU
Radio code base. Results in this section characterize this
second goal only. Development in the GNU Radio community
has (unsurprisingly) focused on Intel SIMD architectures,and
the following discussion represents speed tests on a single
processor, namely an Intel i7 870 (quad-core, 2.93 GHz, 8
MB cache). We report these results primarily to demonstrate
how some of the most widely-used hardware and compiler
technologies interact with the VOLK mechanisms and the
GNU Radio integration pattern to produce efficiency gains (or
not).

Our desire is to isolate two effects of the updates to GNU
Radio to support VOLK. The first effect is an expected
gain in performance owing to the replacement of ordinary
scalar operations with SIMD-vectorized operations. The sec-
ond effect is an expected loss in efficiency owing to added
computation within the GNU Radio scheduler to support
VOLK, specifically computation to manage alignment of the
data buffers passed to work functions. Since keeping buffers
aligned comes at a potentially significant cost to the scheduler,
a central GNU Radio component, studying this second effect
takes on a heightened importance. Without any hard data, we
have no basis to evaluate concerns that increased overhead for
the scheduler across all of GNU Radio might swamp gains
shown for individual VOLK kernels in a simple profiling test.

We test using the simplest GNU Radio flowgraph we can
create. The flowgraph uses a ‘nullsource’ block as an input,
connected to the block under test, followed by a ‘nullsink’
block. The null sources and sinks do nothing, so the data
passed to the block under test is unstructured contents of GNU
Radio buffers. Null sinks and sources are used because they
provide source and sink functionality required to define a flow-
graph but otherwise have minimal impact on the processing
times. These results test for speed but not accuracy of the
kernels. The QA tests previously discussed already provides
us the assurance that the VOLK functions produce the correct
values.

With this basic structure in place, we tested three different
scenarios. First, we looked at a GNU Radio scheduler version
without modifications to support VOLK kernel usage and at
blocks without calls to any VOLK kernel. These experiments
use GNU Radio version 3.5.1, and we refer to flowgraph
test scenarios with this configuration as ‘v3.5.1’. Next, we
tested the new scheduler, but without VOLK kernel integration.
These experiments use GNU Radio version 3.5.2, and we refer
to flowgraph test scenarios with this configuration as ‘v3.5.2’.
Finally, we tested the same 3.5.2 GNU Radio scheduler with
blocks modified to use VOLK functionality. The processor
used in these tests supported Intel SSE architectures from
MMX up to SSE 4.2. Thevolk profile application was used
to determine which proto-kernels would actually be used, so
these tests represent the most efficient proto-kernels available
for this processor. We refer to flowgraph test scenarios with
this configuration as ‘VOLK versions’.

To depict the results for each block, we take performance
for v3.5.1 as a baseline. We then plot percentage in runtime
improvement versus v3.5.1 for both v3.5.2 and for the cor-
responding VOLK version. Improvement of100% indicates
the plotted version ran in half the time of v3.5.1 (a 2×
improvement). Improvement of−100% indicates the plotted
version ran in twice the time of v3.5.1.

We calculated the time required to run the GNU Radio
test program by using the Python ‘time.time()’ function to
get the time before the program was run and the time when
the program finishes. The difference in this time is the related
to the speed of the program.

The Python time function relies on the underlying C li-
brary’s timing functions. The ‘time()’ call returns seconds
since the epoch. Although its time accuracy is only guaranteed
to the second, the Linux platform these were run on provides
a time resolution of10 ms. Further, this is what is known as
‘wall time’ from the start and finish of the test, which includes
any interruptions of the operating system, which are unknown
and can skew the timing results. As such, each test was run
with one billion samples to ensure that the time span of each
tet will not be affected by the coarse10 ms resolution, and
each test was run for20 iterations with the minimum value
selected as the result. In these cases, the minimum represents
the time where variations in the system’s operations were the
least intrusive.

Figure 2 shows the performance difference between dif-
ferent versions for type conversion blocks. The results pro-
vide some interesting context to the discussion about GNU
Radio’s performance. First, in most cases, we get significant
improvementsin speed moving from version v3.5.1 to v3.5.2.
Surprisingly, the changes to the scheduler added computational
and branching overhead but produced faster code. Likely this
improvement is due to aligned memory maintenance affecting
cache management positively.

The use of VOLK, then, shows the potential to add another
level of performance enhancement, even for these simplest
blocks. For some conversions, speedup is only minimal,
or even slightly reduced, compared to v3.5.2. Thecom-

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

108

plex to float conversion demonstrates a small reduction. In
all cases where the VOLK version compares unfavorably to
v3.5.2, performance is quite similar.

In certain cases, when the compiler can generate SIMD code
for a work function, the compiler might easily generate slightly
more efficient code from generic C than from C intrinsics,
and block overhead for testing alignment is missing from the
generic C v3.5.2 experiments. Also, there are times when
the compilers can introduce better pipelining, and for simple
functions, this might be more important than the ability to
parallelize (as pipelining is, indeed, a form of processor paral-
lelizing). These observations could explain slight reductions in
performance moving from v3.5.2 to the corresponding VOLK
version for some of these tests. Dramatic gains in the other
test of the conversion blocks indicate the compiler does not
always appropriately handle these cases, even for straight-
forward conversions.

In particular, we examine thecomplexto float conversion
that shows a slightly worse performance when using VOLK.
Compiling the source code for this block from v3.5.1 into
assembly code, we can study it to see if it was vectorized.
Using GCC 4.6.3 with the compiler flag ‘-O2’, which is the
standard mode it is compile with, the assembly code shows
no use of SIMD instructions. Instead, since this is simply a
case of moving data appropriately to isolate one of the pairsof
floating point values, the compiler is apparently able to handle
this in a highly efficient way. Why this block performs any
different than thecomplexto real or complexto imagblocks,
which do the same thing, is unknown. It is likely, however,
that we are seeing a measurement bias.

The next set of tests look at the performance of VOLK
for simple math kernels like multiplying and adding signals,
and the tests feature in Figure 3. Again, we see that the new
scheduler provides a performance improvement, not a reduc-
tion, versus the old scheduler. VOLK provides a significant
performance jump over v3.5.2 in all but the conjugate block.

To address the equity of the results for the conjugation
block, we compiled the source code into assembly. We note
that GCC version 4.6.1, the compiler used for this experiment,
does have some ability to identify vector parallelism and
compile ordinary C code to SIMD architecture instructions.
In this case, the compiler is indeed smart enough to handle
the conversion using SSE instructions. Because conjugation
is simply flipping the sign bit of the imaginary part, GCC
appears to have no trouble efficiently unrolling the loop eight
times and using the SIMD ‘xorps’ instruction (XOR single-
precision floating point values) along with the appropriate
SIMD load and store calls. Handling the SIMD in-compiler
and performing the loop unrolling without any extra VOLK
overhead has, in this case, proved slightly more efficient.

The results for the processor shown here, an Intel i7 870,
do not include information about newer Intel AVX instruc-
tions. Performing the same tests using a newer ’Sandybridge’
processor (i7 2620M) shows the same trends in both the
v3.5.2 and VOLK-enabled GNU Radio tests. A few gains in
performance from one generation to the next stood out. With

the improved SIMD architecture of the newer processor, the
complexto mag improved from a 600% increase in speed to
1650%. The other type converters scaled accordingly, but this
was the most dramatic. Similarly, themultiply cc increased
from 550% to 1300%. Nothing inherent to VOLK, GCC of
the GNU Radio integration pattern limit performance gains
here shown to a single Intel processor.

V. CONCLUSIONS ANDFUTURE WORK

The results in this paper show that VOLK integration
provides a great improvement to GNU Radio performance.
The blocks shown here are only a sampling of the blocks
converted to use VOLK kernels. The surprising result is that,
even without VOLK, the modifications to the scheduler needed
to enforce alignment boundaries also provide performance
improvements. These improvements manifest despite added
scheduler logic. The improvement is likely due to improved
memory management and cache handling within the system.

We experimented only on x86 processors, the processors
most commonly used to run GNU Radio. We did not in-
vestigate whether these performance patterns hold on other
architectures of emerging importance to commercial markets,
particularly ARM processors. Looking more into these archi-
tectures is a major part of future GNU Radio development.

Further VOLK integration work is forthcoming as we con-
tinue to evolve GNU Radio. Where performance limitations
are identified, we can direct attention to how VOLK might
improve efficiency. Specifically, more complicated GNU Radio
blocks stand to benefit by using one or more VOLK kernels.

Both the development of new kernels and proto-kernels as
well as their use in GNU Radio will be a continued evolution.
One of the strengths of VOLK is the ability to abstract and
seperate this evolution from end users performing block-level
algorithm development and building GNU Radio application in
higher level Python and GRC. When newer and better kernels
and proto-kernels are introduced for differnet functions and
on different platforms, users of each of these classes will
immidiately benefit by the inclusion of these kernels from the
underlying volk system with little to no effort.

VI. A CKNOWLEDGMENTS

We would like to acknowledge the work of Josh Blum and
Nick Foster from Ettus Research, LLC for their contributions
to the build system and automatic test and profiling tool for
VOLK. The use of VOLK in GNU Radio would not have been
possible without their help.

REFERENCES

[1] www.spiral.net/software/viterbi.html
[2] cmake.org
[3] code.entropywave.com/orc
[4] M. A. Greene, “Pentium(R) processor with MMX(TM) technology per-

formance,” IEEE Proc. Compcon, 1997, pp. 263 - 267.
[5] D. Naishlos, “Autovectorization in GCC,” Proc. GCC Developers Summit,

2004.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

109

ch
ar
_to
_fl
oa
t

co
mp
lex
_to
_fl
oa
t

co
mp
lex
_to
_im

ag

co
mp
lex
_to
_m
ag

co
mp
lex
_to
_m
ag
_sq
ua
re
d

co
mp
lex
_to
_re
al

flo
at
_to
_ch
ar

flo
at
_to
_in
t

flo
at
_to
_sh
or
t

int
_to
_fl
oa
t

sh
or
t_t
o_
flo
at

−100

0

100

200

300

400

500

600
%
 Im

pr
ov

em
en

t
ov

er
 v
3.
5.
1
[1
E+

09
 it
em

s]

v3.5.2
volk

Fig. 2. Improvements for the new scheduler in v3.5.2 and VOLKin type conversion blocks versus GNU Radio v3.5.1.

ad
d_
ff

co
nju
ga
te
_cc

mu
lti
ply
_cc

mu
lti
ply
_co
nju
ga
te
_cc

mu
lti
ply
_co
ns
t_c
c

mu
lti
ply
_co
ns
t_f
f

mu
lti
ply
_ff

−100

0

100

200

300

400

500

600

%
 Im

pr
ov

em
en

t
ov

er
 v
3.
5.
1
[1
E+

09
 it
em

s] v3.5.2
volk

Fig. 3. Improvement of new scheduler and VOLK for simple mathblocks from GNU Radio 3.5.1.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

110

