Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

SIMD Programming in GNU Radio: Maintainable
and User-Friendly Algorithm Optimization with
VOLK

Thomas W. Rondeau Nicholas McCarthy Timothy O’'Shea
GNU Radio University of Maryland University of Maryland
Email: tom@trondeau.com Email: namccart@gmail.com Email: oshea@umd.edu

Abstract—We present VOLK as an easy to use single- instruction sets, and architectures differing on a pecessor
instruction multiple-data (SIMD) math library and as_a stru cture basis, it becomes difficult to program and manage code writte
for open-source development of SIMD code. VOLK is the Vector 4 access SIMD instructions, especially when portable désde
Optimized Library of Kernels and provides an abstraction layer - - .
for hardware-specific SIMD operations. The abstraction lager the ,a'm' Even acknowledging differences on a per-processor
aids SIMD code construction, enforces a common interface fo Pasis does not go far enough. SIMD code enables processes
library development, and complements data-streaming commpta- to run faster or more efficiently, but code optimization is a
tion models common in software radio development. run-time problem. The same processor running the same code

_We discuss how VOLK is used in GNU Radio to provide \yihin gifferent memory structures or at different loadsica
significant speed-up to signal processing blocks, and we siay h diff ffici .

current programming models for incorporating VOLK within show al erent_e |C|er_10y propertles:))

those blocks. Results for different blocks are shown. The VOLK library is an abstraction designed to fix these

problems. It provides a platform-agnostic interface ahlée
. INTRODUCTION kernel for each conceptual execution unit subject to SIMD
| wanna go fast! vectorization. Underneath, VOLK has a set mbto-kernels
—Ricky Bobby designed for particular platforms, SIMD architecture ians,
While general purpose processors (GPP) have includedrun-time conditions. The VOLK library compiles all pos-
vector instruction capabilities for a number of years, thusie sible proto-kernels supported by the compiler toolchaibh. A
is still esoteric and difficult to generalize. We presenteiie run-time, during the first call to an abstract kernel, VOLK
Vector-Optimized Library of Kernels (VOLK) project from resolves the kernel to a specific proto-kernel. VOLK tests th
GNU Radio that provides a simple to use, extensible, amdn-time platform for its capabilities to ensure the resdlv
architecture-independent programming tool to enableovectproto-kernel will run correctly and employs a dynamic rank-
ized mathematical operations. ordering to select the best possible proto-kernel. Thega®of
These GPP vector extensions are known as SIMD for singlgroto-kernel resolution is critical to the functionalitf/\dOLK
instruction, multiple-data. SIMD extensions generallyalve and will feature in following sections.
a specialezed set of wide registers and an extended set ofhis paper first describes SIMD programming in more detail
instructions to manipulate data within these registerpic® to expose both benefits and challenges. We discuss the design
implementations have used 128-bit registers, althoughpx86 of VOLK, examining platform independence, extensibildpd
cessors first used 64-bit registers, and current versian2d68. optimized kernel selection. We study how best to integrate
A 128-bit SIMD register can hold four single-precision fleat VOLK and GNU Radio, quantizing observed benefits. The
eight shorts, or sixteen bytes. Families of processors tien paper will conclude with a discussion on future improversent
same vendor and processor families from different vendds VOLK, both speculative and in-production.
can feature different hardware SIMD implementations, and
corresponding instruction set extensions can differ betwe Il. BAsics oFSIMD
generations or from one company to another. SIMD is a common computer instruction architecture fea-
Although compilers like GCC [5] and Intel's ICC try toture provided to enable efficient vector operationsvector
vectorize when they can, it is not an easily solved problesn, eoperationis the simultaneous application of a single operation
pecially for more complicated math functions. Further,emsc to each element in a vector of data. In principle, using vecto
to SIMD registers generally requires low-level programgninoperations results in significant speedups versus usingaqu
tools, and assembly language is still often used. For malent scalar operations: performing a vector operation arua-f
processors, there exishtrinsics, which essentially exposelong vector should take one-quarter as much time and energy
individual assembly instructions to C language compilBtg. as performing four different scalar operations to achidwee t
there exists a tension between the universality of C codame purpose. The x86 (Intel and AMD), PowerPC, and ARM
and hardware optimization at the SIMD level. With librariesGPP architectures all offer SIMD variants. When Intel retzh

101

11

16

21

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

MMX (multimedia extension), its initial GPP SIMD architec- SSE3
ture feature, the company signaled an intention to targdsI ot ———
toward multimedia and graphics processing applications [4 sSE
Such applications often translate easily to signal praogss MMx
applications. Both application classes feature high-ti#t& pentium Pentium3 Pentium 4 'ng;‘é&t‘;
streaming. [: ' :

We provide here a quick example using SSE to per- 9% 1999 2001 2004
form a vector multiplication with two input vectors of

AVX
floating point values. In VOLK, this is the proto-kernel —

volk_32f x2_multiply_32f a_sse SSE4.1
static inline void —_— ,
volk_32f_x2_multiply_32f_a_sse(|
float* cVector, const floatx aVector, Core o i3, i5, i7
const float+ bVector, unsigned int num_points) core (penryn) 131517 (Sandybridge)
{ —_ — — : : : f
unsigned int number = 0; 2006 2007 2008 2011
const unsigned int quarterPoints = numpoints/4;
float+ cPtr = cVector;) Fig. 1. Chart of when Intel introduced its various versiorfs SSIMD
const floatx aPtr = aVector; architectures.

const floatx bPtr= bVector;
__m128 aVal, bVval, cVal;
for (; number< quarterPoints; number+{)

aval = _mm_load ps(aPtr); of Viterbi Algorithm implementations, code auto-genedate
bval = _mm_load_ps(bPtr); . S .
cVal = _mm_mulps(aval, bVal): using SSE intrinsics compares at least comparably and in
_mm_store ps(cPtr,cVal); most cases better than Phil Karn's hand-optimized mixtdire o
y abPtr += 4; bPtr += 4; cPtr += 4; intrinsics and assembly [1]. Compilers can solve theseeissu
differently for different hardware. Hand-optimized as$dyn
number = quarterPointst 4; is static from machine to machine.

for (; number < num_points; number++j . . .
*CPtr++ = (xaPtr++) (xbPtr++); SIMD programming can provide dramatic performance

} benefits, but developers often choose not to support SIMD
} enhancements. Practically speaking, it can be difficultoidec

In this code, the vectoraVector andbVector each contain using SIMD extensions where the project in question assumes

num_points floats. They are multiplied together and produc@ t€a@m of developers and wants to produce cross-platform
output values incVector. In each round of the for loop compatible source code. Intrinsics help abstract away some

four floats from each of the input vectors are loaded imrgachine-speciﬁc differences, l_)Ut intrinsics_ do not alstra
SIMD registers and then multiplied together. Them mul ps the point where two code contributors running computennfro

performs the four floating point multiplications at the Samgn"ferent decades with different compiler versions canilgas
time, and each of the vector pointers then increments by fdgffoPerate.
float items, or sixteen bytes, so that the next round uses fouendors use architectures with critical differences. llhtes
new float pairs. In total, the loop runs four times fewer thaf range of architecture families ranging from MMX to SSE
an equivalent, non-vectorized loop. and AVX. AMD produced chips with a distinct architecture
A final for loop at the end cleans up any remaining daalled 3DNow!, but has since dropped those extensions in
items if num_points is not a multiple of four, so this loop @n effort to harmonize SIMD across x86. PowerPC has the
multiplies one, two, or three extra float pairs to ensure tHdtivec instruction set, and ARM uses the NEON extensions.
entire vector is processed. Within one vendor’s product line, hardware and software
This example showcases the use of C intrinsics to acc&¥®lves. Figure 1 depicts various generations of Inteld 3|
SIMD functionality. Most VOLK proto-kernels feature intii architecture family. Generally, all newer processors sth-
sics as opposed to in-line assembly for two reasons. Tiaen older architectures for backwards compatibility, bate
first reason is simplicity and decreased development timigitten for newer architectures will not work on older pro-
Intrinsics leave register mapping to the compiler and redugessors. Barriers to compatibility can easily relegate 3IM
the set of required technologies for SIMD programming. Therogramming to projects for which efficiency is paramount.
second reason is portable efficiency. Not all code optiritnat Nor is compatibility the only barrier to using SIMD for
challenges are equal to the compiler. C compilers often geftware projects.
not optimally leverage SIMD architectures, as our resudts f SIMD code can place demands for memory management
specific GNU Radio blocks show. They can, on the othéechniques on the code surrounding it. Common to all the
hand, handle register mapping, software pipelining, amgp lo SIMD architectures previously mentioned are some regirist
unrolling quite well. Performance benchmarks from the &piron loading (putting samples into the registers) and storing
Viterbi project demonstrate this phenomenon. Across agan@noving samples out of the registers). Many architectures,

102

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

Intel's x86 among them, have specific memory alignmertdkesN arguments of the same type. If the kernel has an input
requirements for vector loads and vector stores. For SSEctor argument and operates in place, the coder must list
architectures, true vector loads and stores requirdyte that argument in the input-fingerprint, and scalar argusient
alignment, and unaligned data management requires callsfatlow vector arguments in order. The function-name is any
substantially less efficient load and store instructions. Astring describing kernel functionality and must not comtai
tempting to use an aligned load with unaligned data caubstring matching the argument type template. The output-
result in errors and unexpected behavior. A data-streamifiiggerprint follows the same structure as the input-fingetpr
programming model must assume many processes will bet describes output arguments rather than input arguments
bound by memory bandwidth and not computation-bound. InA VOLK kernel can have any number of proto-kernels.
order really to expose the efficiencies of SIMD architecsuréd proto-kernel is a static inline function. Declaration and
to an SDR programming model, the model itself must take tliefinition of the proto-kernels allow for a standard, poleab
responsibility to coordinate memory alignment. interface to the individual proto-kernels for use on system
Various attempts have been made to solve the problewthout C++ compilation and shared objects. Proto-kernels
of generalizing SIMD programming. Intel's compiler (ICC)follow the naming structure
and the Intel Performance Primitives (IPP) and Math Kernel volk_input-fingerprint function-name
Library (MKL) do a good job of hiding the SIMD optimiza- _output-fingerprintalignment-flagtag,
tions from the users, but these approaches only target Intghere tag is the descriptor for the particular proto-kerfibe
processors. One of the more accessible and successful tegsneed not refer to any SIMD architecture, though often it
in this area is ORC (the OIL runtime compiler) [3]. VOLKdoes. Each of a kernel's proto-kernels must have a unique
is actually capable of using ORC to create proto-kernels, kiag. The alignmentflag is for a kernel expecting boundary-
that is beyond the scope of this paper. alignment ofu for a kernel with no alignment expectations. An
alignment flag is required for all but two special-case proto
kernels: one with tagienericand another with taglispather
A. Coding A proto-kernel argument list positions the output arguraent

In §l, we describe VOLK both as a library of kernels ancﬁllescribed in the_ out_put-fin_gerprint first,_ follovx_/ed by those
as an abstraction layer designed to solve problems inhmen?rggments_ descrlbe(_j in the mput-fmg_erprlnt. Afinal argotne
open source development with SIMD code. The description g s;}gned mtt) nurprow_lts, QIOSES The list a}nd holds the V?"r]‘!e
SIMD architecture ingll identifies code compatibility as one0 ¢ fe num e(; c;. pplnts f|1n t edongesft Input vecéor. Within
such problem. Open source projects must support the haed Iunct|onh efinition, t f cod er1s ree to co € VOLK
their communities use, and that hardware varies in age .31(%"8 Opers ave_not y_et ound it necessary to vv_nte proto-
ability. Beyond hardware compatibility, a successful edost ernels incompatible with a ANSI C compilation. Since C++
tion layer must enable meaningful collaboration. Open ur"‘S probably a mnore common environment _for.VOLK code,
development relies heavily on integrating various sohgio volk_complex.h” provides an_abstractlon bridging the chasm
from users working on different aspects of multiple protrl;embe'[s\’veen ﬂg_at comﬁ)]Iex t}tlpis In IC_and i;;f ier di
Communities can fracture, and competition can yield bexefit, ur_rt(;]un 'ng eaf[: proto-kernel s an #itdet compiier direc-
but freedom in software means the ability to cull from thetbellVe With argumen
available ideas. In this section, we tour the particularshef LV_HAVE_ARCH1 && LV _HAVE_ARCH?2 &&
VOLK abstraction layer with an eye toward these stated goals ... g& LV _HAVE_ARCHN,

VOLK defines three different conceptual object types: ker-

nels, archs, and machines.§h we introduced the kernel andWhereARCHJ is a VOLK arch object for eacl.
! ' ' An archis an abstraction for any hardware-specific property.

the proto-kernel. A kernel corresponds to a file containinﬂ) GCC, an arch corresponds roughly to one or se |

source code for its proto-kernels. The naming .Of the.lt fIIf’?ags such asmsse3 To CPU hardware, an arch describes
follows a structure enforced by regular expressions in th

VOLK build system: p%yswal silicon or f|rmware_z attributes enablmg_, for inste,
the CPU to execute machine code for a particular assembly
volk_input-fingerprint function-name instruction.

_output-fingerprint. An arch is defined by its entry in an XML table,
The input-fingerprint is an underscore-separated list géiar “archs.xml.” Each ARCH in the table corresponds to a
ment types|s| BT, and argument counts)\k For an argument VOLK macro LV_HAVE_ARCH. The XML table indexes
type, the optional letter s identifies a scalar argument. Binformation CMake [2] can use to determine whether the
countB is one 0f64, 32, 16, or 8, and indicates item size for project compiler can generate code specificAtBC H. Each
the corresponding argument. TydE, is one ofi for fixed- arch entry may contain flag subentries for the project coenpil
point integersy for unsigned fixed-point integerg,for floats, and the coder can assume all compiler flags are set within
ic for interleaved fixed-point complexes, @t for interleaved the directive #ifdef LV HAVE_ARCH. For example, within
float complexes. An argument counfyxfor N > 1 an integer, #ifdef LV_HAVE_SSE3 a coder may assume the flagsse3
always follows an argument type descriptor when the kernislset and include “pmmintrin.h.”

I1l. VOLK P ROGRAMMING MODEL

1)

103

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

The macro LVHAVE_GENERIC is always set ta. The representations. In particular, a kernel class representa
coder uses this macro unaccompanied by any other to derfoddds onto arch dependency information and identification
that the enclosed code contains no dependence on a VOiags for each of the proto-kernels. The arch dependency list
arch. A generic proto-kernels one written inside the direc- _tagdeps for a given kernel is
tive #ifdef LV_HAVE_GENERIC. Intuitively, a generic proto-
kernel is a universally available fall-back proto-kerrigach (ARCHI, ARCH?, -~ , ARCHN), 2)
kernel must contain one (or more!) generic proto-kernels. Using definitions from (1) in§lll-A. VOLK auto-generates
addition, for reasons made clearihl-C, one unaligned proto- C source code for each kernel using C code templates and
kernel must have the tag “generic.” In defining the concept af Python utility. Each of a kernel's proto-kernels shares
the generic proto-kernel, it is important to distinguislus®- an argument and return value fingerprint, and VOLK type-
code universality from compiled-code universality. Withi defs a kernel function pointer using this fingerprint. VOLK
VOLK, a generic proto-kernel can compile to assembly codgenerates in “volk.h” three distinct kernel object inteda
that is very much not universal. In fact, the compiler cadeclarations with this fingerprint type for every kernelesif-
promote any proto-kernel using compiler flags for VOLKically, for each kernel “volkkernelnamen,” VOLK furnishes
archs unrequired by the source code. To address how VOlEKIk_kernelnamea, volk_kernelnameu and volk kernelname
handles promotion requires a discussion of VOLK machines interfaces to that kernel. Volk filters definitions for the
and library compilation. interfaces through a call tget machine() and this filtra-

. tion is the primary subject oflll-C. The return value of
B. Compiling get machine()is a volk_ machine struct. The volimachine

A VOLK machineis an abstraction for a processor. Tastruct definition itself is templated per-kernel such ttet te-
CMake, a machine corresponds roughly to a list of compilgliting struct contains, among other information, eaciméts
flags used to compile each VOLK kernel. To CPU hardwar@ypl_names, impl_alignment, n_impls, and impls. The
a machine is a full description of the various architectared string arrayimpl_names holds the tag names for the kernel's
software attributes required for a processor to run bisarigroto-kernels. The function pointer array:pls holds point-
within a shared object. The machine set is defined in “mars to the proto-kernels themselves, andmypls holds the
chines.xml,” and from this perspective, a machine ess@ntianumber of proto-kernels in the array.pls. The boolean array
boils down to a list of archs. How VOLK compiles comesmpi_alignment indicates whether the proto-kernelsiinpls
down to resolving any tension between what the system agfike alignment assumptions. The index of tdg the array
compiler can do on one hand and what each machine definitignp;_names corresponds to the index of the proto-kernel
asks the system and compiler to do on the other hand. with tagt in the arrayimpls and the index of the alignment

At compile time, CMake tests each VOLK arch inrequirements for that proto-kernel, allowing for lookuf.
“archs.xml” by compiling a dummy program using the f|aG:0urse,n_impls, impl_names, impl_alignment andimpls
selection in the XML entry for that arch. VOLK exposesy|| differ on a per-machine basis.
the arch list to CMake via a Python utility which parses vOLK localizes most machine-specific code
the XML and holds intermediate Python class representatiopariation in templated code generated from the file
of the various archs. If a follow-on test is required, VOLKyolk_machinexxx.tmpl.c.” By restricting this code
runs the follow-on test and overrules the result of the firgleneration appropriately, CMake ensures VOLK will
test. For example, current versions of GCC can handle b@idmpile code only for those machines the compiler can
the —m64 and the —m32 flags separately. A Linux install handle. (VOLK generates some other machine-specific code
might include development libraries for one or the othgfom “volk_machines.tmpl.h” and “volkmachines.tmpl.c.”
flag, not both. A follow-on test selects one or the other ofhe resulting code relates to code generated from
the flags according to the operating system. (The user c&alk_machinexxx.tmpl.c.”) CMake loops over only
override this behavior and cross-compile but must instathb qvqailable_machines when generating code from this file
development libraries beforehand.) A listiailable_archs, of and produces a file defining aolk_machine struct with
available archs results. CMake then tests each VOLK machig@ch iteration. While generating code from this file, a Pgitho
VOLK exposes the machine list to CMake via a Python utilitytility function selectively sets #define LWMAVE_ARCH
which parses the XML and holds intermediate Python clags each VOLK archARCH in accordance with the current
representations of the various machines. Each machine ignachine, and any machine imvailable_machines will set
list, machine_archs, of archs. If only archs available to the compiler. Code generated fras th
template forms a sole point of contact between user-gesgbrat
code in kernel definition files and VOLK shared objects.
then the compiler has what it needs to compile a library fer ttCMake generates one shared object per machine, applying
machine. A listavailable_machines, of available machines the compiler flags corresponding to that machine. The aobject
results. linked into each library are identical with the exception of

A VOLK Python utility parses each kernel definition filethe objects generated from the “vatkachinexxx.tmpl.c”
and builds a dictionary of intermediate Python kernel classmplate. Each library links only one unique such object.

available_archs N machine_archs = machine_archs,

104

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

The compiler flags applied to generate any one shared objéidhe symbols™ and & take their usual meanings as bit-
apply equally to all code generated for that shared objéct.Wise operators.) To express this formula simply, VOLK will
the machine allows for SSE3 instructions but a proto-kernebt select a machine if the hardware cannot run it, but the
requires only SSE2 instructions, the compiler has freertag best ranking machine wins out otherwise. The initial call
generate assembly translating from the proto-kernelimal to get_machine() sets a pointer tonh, but subsequent calls
SSEZ2 instructions to SSE3 instructions. This promotioaaff simply return this pointer.
observed irglll-A is crucial to VOLK taking full advantage of To resolve the kernel interfaces vokernelnamea and
optimizing compilers. Developers write VOLK proto-kerael volk_kernelnameu, VOLK determines the best avail-
in order to gain efficiency. We have described compilatiomble proto-kernels among those im via a call to
such that for each kernel, there are multiple proto-kerneblk_rank_archs(). This function expresses a default be-
definitions competing for access to kernel interface fumrcti havior and an ability to override that behavior via settings
pointer objects. VOLK must allow this competition to remairn a preferences file. The default behavior plays out much
fair. Within the restrictions imposed by a machine defimitio like the initial call to get_machine(). The volk_machine
the compiler should do everything it can to make generstruct at address: has an array of intsyrch_de f s, populated
versions as efficient as possible. VOLK establishes a sitnatwith ¢(p;) where0 < i < n_impls and p; is the sub-
such that hand-coding complements compiler optimizationachine corresponding to the proto-kernel identified by the

rather than substituting for it. tagimpl_namesli]. A sub-machinglike a machine, is a list of
. archs. Unlike a machine, a sub-machine does not charazteriz
C. Runtime processor. A sub-machine characterizes hardware reggiitsm

VOLK runtime behavior defines the competition for thdor @ proto-kernel. The sub-machine corresponding to aoprot
kernel function pointers among the proto-kernels, and tHigrnel is defined to be the listagdeps: (2), §llI-B. VOLK
competition establishes a situation such that differengyd- definesp = arg maxg(¢(p;)) where
coded and cqmpiled proto-kernels complement one another S = {i € [0, n_impls] : (@) &d(p;) = 0}.
rather than displace one another. gil-B, we mention the
kernel definitions filter through a call tget_machine(). The initial call to the kernel sets volkernelnamea to p, and
In fact, they filter through two callsyet_machine() and Subsequent calls return this pointer.
volk_rank_archs(). The first call implements runtime selec- To define volkkernelnameu, VOLK further filters the set
tion from among the libraries generated at compile time. Theto include only aligned proto-kernel indices. If
second implements runtime selection from among a kernel's
proto-kernel set. We examine the two separately.

The ordering of the archs in “archs.xml” is not arbitrarythen forp(u) = argmaxg,(¢(p:)), the initial call to the
CMake defines a macro, \VARCH for each VOLKARCH kernel sets volkkernelnameu to p(u).
according to the order al RC' H'’s appearance in the file. Code specifying the override behavior for

Each arch contains aheckentry referring to a runtime volk_rank_archs() — resides in “volkprefs.c’ and
method determining whether a processor can run that arcyPlk_prefs.h” and relies on setting in a preferences
The runtime checks generated from “vodiou.tmpl.c” use file. What populates this file? In principal, anything can
check entry definitions specifying calls to utilities likpuid or Populate the file, making VOLK runtime behavior user-
tests for register bits set in a standard way across arthitec accessible. In practice, VOLK offers a utilityolk_profile,
families to indicate functionality (x86 chips from AMD andfor assessing runtime-accessible proto-kernels. Thibtyuti
Intel implement such an identification protocol). shares a code base with testall, a quality assurance

In principle, the set of machines maps one-to-one &b utility. Both ut|I|t|gs rely on code auto.-generaFed folliog
where n is the number of archs: each machine either h#e kernel naming structure. The files “ails.h” and

or does not have each arch. We assign to each machingl@ utils.c” determing auto-generation behavior. The
unique integer via a simple inclusiah from Z," to Z. The header file defines three macros: VOLRUN_TESTS,

LV_ARCH?' bit in ¢(m) is 1 for a machinen if and only VOLK_PROFILE, and VOLKPUPPETPROFILE.

if m has the arcdRCH. The ordering on ints now reflectsEssentially, VOLKRUN_TESTS loads arrays from the
our intentional ordering of archs in “archs.xml.” Machipe iNPut-fingerprint with random data, runs the kernel, andstes
outranks machiné if the most valuable arch for which thedata in the output arrays against results from the protoeker
two machines differ belongs to machine and not! (this is With tag “generic.” VOLK PROFILE times each runtime-
known asdictionary orde). accessible proto-kernel, writing results to the prefeesnc

With the first call to get_machine(), VOLK performs file. o _ .
the appropriate runtime check for all archs and calls The macros support only a limited number of fingerprint

volk_get_lvarch() to find ¢(I) where[is the runtime ma- variations: fingerprints with a combined number of up to

S(u) = {i € S: impl_alignment(i) = false, }

chine. VOLK then definesih = arg max,(¢(m)) where 4 vector arguments and up to only one scalar argument (a
float or a float complex). All vector arguments must have the
T = {m € available_machines :"p(I)&p(m) = 0}. same length. The user can control a tolerance with which to

105

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

compare results, the value of the scalar used in the functiallow for execution of the aligned interface. If not, the-dis
call, the length of the vector arguments, and the number pétcher executes the unaligned interface. The coder can ove
iterations to run. In order for VOLK to test a user-definedde the default behavior of the dispatcher by defining agrot
kernel, the user must add a call to the VOLRUN_TESTS kernel within the directive #ifdef LVHAVE_DISPATCHER
macro within the file “testga.cc.” In order for VOLK to using the tag “dispatcher.” Within this directive the coder
profile a user-defined kernel, the user must add a call ¢an use volkkernelnamea and volk kernelnamegu with im-
the VOLK_PROFILE or VOLK PUPPETPROFILE macro pugnity. The coder can also use vadinother kernelnamea,
within the file “volk_profile.cc.” volk_another kernelnameu, and volk another kernelname
The macro fingerprint restrictions necessitate th&ith impugnity, providing a convenient mechanism for devel
VOLK_PUPPETPROFILE macro and the conceptopingmeta-kernelgkernels calling code from other kernels).
of puppet kernels. VOLKPUPPETPROFILE works The dispatcher proto-kernel must match the output of the
identically to VOLK PROFILE, with one exception. generic proto-kernel, but this restriction is essentitiily only
VOLK_PROFILE takes as an argument the name of a kerrmie.
to be profiled, and profiling results apply to that kernel.
VOLK_PUPPETPROFILE takes two name arguments: a IV. INTEGRATING VOLK INTO GNU RADIO
kernel to be profiled (th@uppe} and a kernel to which the The VOLK dispatcher ensures correctness across all align-
profiling results apply (thepuppet mastgr When a coder ment situations at runtime, but correctness is not the exau
writes a kernel that does not conform to the fingerprimjoal of a vector-optimized library. VOLK goes a long way
restrictions, the coder can use puppets to access equivateward selecting optimal code on a per-situation basis, but
auto-generated functionality. For instance, if a codertesri it does nothing to create optimal situations. GNU Radio
a kernel with vector arguments but also wants to passisaan implementation for a particular computational model,
scalar value by pointer in order to recover that value and the specifics of that implementation create the runtime
completion of the kernel call, the coder has broken ttmtuations exposed to the VOLK library. We discuss some
fingerprint assumptions. The auto-generator will interpref the specifics of that implementation and trade-offs behin
any pointer argument as a vector argument, and all vecttifferent approaches to using VOLK within the GNU Radio
arguments must have the same length. The coder writesae base.
puppet variant for the kernel. Auppet variantis a kernel
with a compliant fingerprint such that puppet proto-kerne
call corresponding puppet master proto-kernel’s direche GNU Radio uses circular buffers to pass data between signal
coder manages delinquent arguments manually such the&cessing blocks. The dynamic scheduler keeps track of the
running the puppet proto-kernels under VOLRUN_TESTS read and write pointers of each buffer to determine how much
provides meaningful results. The coder can add a call to tHata is available for a block’s input and how much space is
puppet as a replacement for a call to the puppet masterawailable for a block to write its output. Each call to a block
“testga.cc,” but in order for the runtime selection meckemi requires a set of calculations to determine how many items
to take note of profiling results for a puppet, the coder neetle block may handle and produce.
to specify the puppet/puppet master relationship expfitiy GNU Radio creates these buffers on page boundaries. Due
a call to VOLK_PUPPETPROFILE. to buffer page-alignment we know GNU Radio blocks start life
The volk_profile utility harmonizes competition amongwith input and output buffers aligned to SIMD architecture
competing proto-kernels. Code written meticulously toidvorequirements. Unfortunately, due to the dynamic nature of
cache misses for a particular, older-generation chip can d¢be scheduler and the dynamic nature of sample arrival into
exist with code written quickly to leverage new hardwar8owgraphs, we cannot guaranta@riori any call to a block’s
instructions. If yesterday, code written to leverage SIMBvork function should continue to respect byte alignment
instructions explicitly ran faster than code written gecadly, beyond the first call. And so we have to be more clever with
but today that same generic code runs faster due to compiteir scheduling algorithms.

A Alignment

advancements, nothing is lost. Thelk_profile utility is It is relatively trivial to force the scheduler to allow bkx
a fair judge, and unused proto-kernels can lie around lite produce anoutput multiple of items. This value is an
unexpressed genes, waiting for their day in the sun. integer multiple such that each time a block is passed data,

We have described resolution for only two of the threthe scheduler will always pass it data sufficient to produce
interfaces provided for each VOLK kernel. In additioroutput-multiple-many items. Forcing an output multiplenca
to volk_kernelnamea and volkkernelnameu, VOLK also keep input and output buffers aligned to SIMD architecture
provides volkkernelname This final interface uses therequirements. If we use single-precision floats as an exampl
VOLK dispatcherto arbitrate between volkernelnamea with an SSE architecture, we need 4 floats per SSE register,
and volk kernelnameu at runtime. By default, VOLK auto- and so using and output multiple of 4 will preserve SIMD byte
generates a proto-kernel with tag “dispatcher.” The didpat alignment between calls to work.
inserts a check before each kernel execution and determinekn GNU Radio, there exists a callet_output_multiple,
whether the input and output buffers handed to the kernél withich lets the user tell the scheduler always to expect an out

106

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

put multiple from a given block. VOLK can internally queryUnlike the GNU Radio block’s work function, and unlike the
the machine architecture with a call telk_get_alignment VOLK kernel, the scheduler is the unique entity within the
that returns a value for SIMD byte-alignment. The two tool&NU Radio system best able to load-balance work functions
together allow GNU Radio to guarantee a SIMD byte aligrdynamically. The scheduler is, therefore, unique in itdigbi
ment for the use of VOLK kernels in work functions. to force overhead amortization. And the scheduler doestso: i
Dynamic arrival times of samples through source blockses to maximize the number of items passed to a block. When
poses a problem to this approach. If a GNU Radio applicatishifting from aligned to to unaligned states, and when isigft
receives packets of samples, and if those packets happetmdck again, the scheduler packs as many items as possible
contain a number of samples incommensurate with the outfinito the input buffers of its blocks. It does not optimize for
multiple requirement of the buffer, GNU Radio will simplyrunning as much data as possible through aligned VOLK
hold the remaining samples until there are enough to méetrnels when shifting to or from an unaligned state. Early
alignment requirements. If there is a significant time dédfece attempts at integration showed the overhead of the extlasyc
in the arrival of packets, we then pass significant latency eequired to maximize flow through the aligned VOLK kernels
to the system. GNU Radio waits patiently for another fewnd added buffer manipulation come at a far greater cost to
bytes in order to finish crunching on a packet that has alreattiye system than falling back on an unaligned VOLK kernel.
arrived in its entirety. For example, using floats with SSE, w Pushing overhead up the stack into the scheduler appears
need a multiple ofl floats, or16 bytes, to call the processingoptimal when an application leverages VOLK kernels. The
block. If a packet arrives withi16 bytes (or129 floats), we can scheduler, unlike the kernel, can adapt to the overheadscro
easily process the firstl2 bytes. The scheduler can bréak2 an entire application by scheduling larger granules of work
bytes into chunks that preserve SIMD byte-alignment, bat tion the other hand, pushing branching cycles up the stack
packet has an inconvenient extra sample. GNU Radio will hodgids overhead even to applications without VOLK kernels
this last sample of bytes stranded in a source block becausgd without alignment concerns. This trade-off appearadou
the source block will release floats only in multiples4flf the applications likely to require efficiency are precistigse
a packet arrives every two seconds, the application finishé&ly to need alignment; they are the applications likedy t
our example packet only after the passage of two secordgerage VOLK.
brings another packet and after the final byte traverses therhere are limits to the value of these unquantized argu-
GNU Radio flowgraph. Faster though the individual processiinents. GNU Radio cannot afford to throw performance for
blocks might be, the entire system (for this example at Jeagfeneral applications under the bus in support of applioatio
is slower. taking maximum advantage of SIMD programming. Added
GNU Radio has adopted an alternative strategy: rather th@erhead to the scheduler is a concern. We examine conse-

force an output multiple to maintain alignment, we mereljuences to using VOLK in the next section, investigating thi
requestthe alignment. In this model, a block requires an aligrpverhead in particular.

ment value to call an aligned VOLK kernel, and we use the
volk_get_alz’g?zme@ mechan_ism com_bined with knoyvledgeB_ Correctness
of the block’s item size to derive a desired output multiplee
block then avails itself of a new GNU Radio utility function: Part of VOLK'’s principle contract with the users is the
set_alignment. This function defines a block’s VOLK align- assertion that all proto-kernels will behave the same on a
ment requirement in itemd.¢., floats, ints, complex, shorts,given machine. When developing a kernel, the generic proto-
etc.). kernel should be externally verified for correctness. Tleaich
The scheduler interprets this alignment value as a goal &w proto-kernel is tested against the generic versionedfse
not a requirement. When possible, the scheduler will preduthey produce the same results. Comparisons are made to some
a number of items to the block meeting the alignment goalegree of accuracy since different processing engines may
but the scheduler will pass a reduced number of items to thepduce minor numerical differences. The quality asswanc
block if it cannot satisfy the alignment goal. (QA) code can account for these differences, but the deeelop
After passing an unaligned buffer of data to the block, thaust remain aware of them and understand to what level of
scheduler will then attempt to correct the problem as gyickprecision VOLK enforces its contract.
as possible to allow the block to resume aligned processing. GNU Radio provides mechanisms for QA testing all of its
Two points regarding requested alignment deserve nobdocks, and these mechanisms allow the block designer to
First, we have introduced more logic into the scheduler tccount for variance in the VOLK QA mechanisms. The GNU
test if there are enough samples for alignment and try to fieadio block designer generally crafts sets of known inpats a
establish alignment as quickly as possible. Meanwhile, tlo@tputs to a block. The known outputs are compared against
blocks themselves must now make a branching statemém results of the GNU Radio block given the inputs. If they
within the VOLK dispatcher to test for unalignment. All ofmatch, again to a predetermined level of accuracy, the Q& cod
these steps add cycles to the operation of GNU Radio apgiasses. We use this technique to ensure that the VOLK and
cations, and cycles can have critical performance imptinat GNU Radio kernels produce the correct numbers and behave
The discussion falls to the subject of amortizing overheaproperly under various conditions as outlined in the QAgest

107

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

C. Results With this basic structure in place, we tested three differen
L) , o scenarios. First, we looked at a GNU Radio scheduler version
VOLK's integration with GNU Radio is only partly com-.ihoyt modifications to support VOLK kernel usage and at
plete. Most of the simple signal processing blocks have begfy s without calls to any VOLK kernel. These experiments
converted to use VOLK, but many blocks requiring sophigjse GNU Radio version 3.5.1, and we refer to flowgraph
ticated mamp_ulatlon to expose parall_ellsm or coord|r|at|(_)test scenarios with this configuration as ‘v3.5.1". Next, we
between multiple VOLK kernels remain untouched. In thiggieq the new scheduler, but without VOLK kernel integrati
section, we present results achieved with some of these VOl ese experiments use GNU Radio version 3.5.2, and we refer
converted, simpler blocks. As a hedge against generaizatiy, fiograph test scenarios with this configuration as \a.5.
we note most of the blocks discussed essentially call a VOL,-Iﬁna”y we tested the same 3.5.2 GNU Radio scheduler with
kernel and dq nothi_ng else Within_theirw_ork fur_lctions. TBbU piocks modified to use VOLK functionality. The processor
not necessar.ny typical of VO,LK integration, this sort 0bbk e in these tests supported Intel SSE architectures from
deserves heightened attention. These are some of the magfy up to SSE 4.2. Thevolk profile application was used
heavily used blocks, and many of them are used toward eetermine which proto-kernels would actually be used, so
top of flowgraphs where data rates are highest and efficiengye tests represent the most efficient proto-kerneltahtei

is most crucial. . _ _ for this processor. We refer to flowgraph test scenarios with
The ambition set out for this paper is twofold: to introducghis configuration as ‘VOLK versions'.

in detail one implementation for a cross-platform SIMD desi 1o depict the results for each block, we take performance
environment and to demonstrate the subtleties behind fyopgor v3.5.1 as a baseline. We then plot percentage in runtime
using that design environment for optimization of the GNymprovement versus v3.5.1 for both v3.5.2 and for the cor-
Radio code base. Results in this section characterize thigponding VOLK version. Improvement af0% indicates
second goal only. Development in the GNU Radio communige piotted version ran in half the time of v3.5.1 (a 2
has (unsurprisingly) focused on Intel SIMD architectuas®l jmprovement). Improvement of 100% indicates the plotted
the following discussion represents speed tests on a sing®sion ran in twice the time of v3.5.1.
processor, namely an Intel i7 870 (quad-core, 2.93 GHz, 8w calculated the time required to run the GNU Radio
MB cache). We report these results primarily to demonstraiest program by using the Python ‘time.time()’ function to
how some of the most widely-used hardware and compilggt the time before the program was run and the time when
technologies interact with the VOLK mechanisms and thfie program finishes. The difference in this time is the eelat
GNU Radio integration pattern to produce efficiency gains (g the speed of the program.
not). The Python time function relies on the underlying C li-
Our desire is to isolate two effects of the updates to GNb}’ary’s timing functions. The ‘time()’ call returns secand
Radio to support VOLK. The first effect is an expectedince the epoch. Although its time accuracy is only guaeshte
gain in performance owing to the replacement of ordinagy the second, the Linux platform these were run on provides
scalar operations with SIMD-vectorized operations. The sea time resolution ofl0 ms. Further, this is what is known as
ond effect is an expected loss in efficiency owing to addegall time’ from the start and finish of the test, which incksl
computation within the GNU Radio scheduler to suppogny interruptions of the operating system, which are unknow
VOLK, specifically computation to manage alignment of thand can skew the timing results. As such, each test was run
data buffers passed to work functions. Since keeping [iffetith one billion samples to ensure that the time span of each
aligned comes at a potentially significant cost to the scleedutet will not be affected by the coars® ms resolution, and
a central GNU Radio component, studying this second effegdch test was run fo20 iterations with the minimum value
takes on a heightened importance. Without any hard data, ¥&ected as the result. In these cases, the minimum repsesen
have no basis to evaluate concerns that increased overtieadHe time where variations in the system’s operations wege th
the scheduler across all of GNU Radio might swamp gailsast intrusive.
shown for individual VOLK kernels in a simple profiling test. Figure 2 shows the performance difference between dif-
We test using the simplest GNU Radio flowgraph we caerent versions for type conversion blocks. The results pro
create. The flowgraph uses a ‘nudburce’ block as an input, vide some interesting context to the discussion about GNU
connected to the block under test, followed by a ‘nsithk’ Radio’s performance. First, in most cases, we get significan
block. The null sources and sinks do nothing, so the dataprovementsn speed moving from version v3.5.1 to v3.5.2.
passed to the block under test is unstructured contents &f GISurprisingly, the changes to the scheduler added compnéti
Radio buffers. Null sinks and sources are used because they branching overhead but produced faster code. Likedy thi
provide source and sink functionality required to define @flo improvement is due to aligned memory maintenance affecting
graph but otherwise have minimal impact on the processingche management positively.
times. These results test for speed but not accuracy of thelhe use of VOLK, then, shows the potential to add another
kernels. The QA tests previously discussed already previdevel of performance enhancement, even for these simplest
us the assurance that the VOLK functions produce the corrétbcks. For some conversions, speedup is only minimal,
values. or even slightly reduced, compared to v3.5.2. Toem-

108

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

plex to_float conversion demonstrates a small reduction. lime improved SIMD architecture of the newer processor, the
all cases where the VOLK version compares unfavorably tmmplexto_magimproved from a 600% increase in speed to
v3.5.2, performance is quite similar. 1650%. The other type converters scaled accordingly, bsit th
In certain cases, when the compiler can generate SIMD codas the most dramatic. Similarly, thaultiply_cc increased
for a work function, the compiler might easily generatelslig from 550% to 1300%. Nothing inherent to VOLK, GCC of
more efficient code from generic C than from C intrinsicdhe GNU Radio integration pattern limit performance gains
and block overhead for testing alignment is missing from theere shown to a single Intel processor.
generic C v3.5.2 experiments. Also, there are times when
the compilers can introduce better pipelining, and for $amp
functions, this might be more important than the ability to The results in this paper show that VOLK integration
parallelize (as pipelining is, indeed, a form of processmap Provides a great improvement to GNU Radio performance.
lelizing). These observations could explain slight retret in - The blocks shown here are only a sampling of the blocks
performance moving from v3.5.2 to the corresponding VOLKoNverted to use VOLK kernels. The surprising result is,that
version for some of these tests. Dramatic gains in the otfMEN without VOLK, the modifications to the scheduler needed
test of the conversion blocks indicate the compiler does riét enforce alignment boundaries also provide performance
always appropriately handle these cases, even for straightProvements. These improvements manifest despite added
forward conversions. scheduler logic. The improvement is likely due to improved
In particular, we examine theomplexto_float conversion memory management and cache handling within the system.
that shows a slightly worse performance when using VOLK. We experimented only on x86 processors, the processors
Compiling the source code for this block from v3.5.1 inténost commonly used to run GNU Radio. We did not in-
assembly code, we can study it to see if it was vectorize¢gstigate whether these performance patterns hold on other
Using GCC 4.6.3 with the compiler flag -O2’, which is thearchitectures of emerging importance to commercial market
standard mode it is compile with, the assembly code showarticularly ARM processors. Looking more into these archi
no use of SIMD instructions. Instead, since this is simply #ctures is a major part of future GNU Radio development.
case of moving data appropriately to isolate one of the pdirs Further VOLK integration work is forthcoming as we con-
ﬂoating point values, the Comp”er is apparent|y able todbkan tinue to evolve GNU Radio. Where performance limitations
this in a h|gh|y efficient way. Why this block performs anyﬁlre |dent|f|ed, we can direct attention to how VOLK mlght
different than theomplexto_real or complexto_imagblocks, improve efficiency. Specifically, more complicated GNU Radi
which do the same thing, is unknown. It is likely, howevehlocks stand to benefit by using one or more VOLK kernels.
that we are seeing a measurement bias. Both the development of new kernels and proto-kernels as
The next set of tests look at the performance of VOLP(\/e" as their use in GNU Radio will be a continued evolution.
for simple math kernels like multiplying and adding signalé2ne of the strengths of VOLK is the ability to abstract and
and the tests feature in Figure 3. Again, we see that the ng@perate this evolution from end users performing blouktle
scheduler provides a performance improvement, not a red@tgorithm development and building GNU Radio application i
tion, versus the old scheduler. VOLK provides a significaftigher level Python and GRC. When newer and better kernels
performance jump over v3.5.2 in all but the conjugate blocknd proto-kernels are introduced for differnet functioms! a
To address the equity of the results for the conjugatish different platforms, users of each of these classes will
b|ock, we Comp"ed the source code into assemb|y_ We nd@mldlately benefit by the inclusion of these kernels froma th
that GCC version 4.6.1, the compiler used for this experimetnderlying volk system with little to no effort.
does have some ability to identify vector parallelism and VI, ACKNOWLEDGMENTS

compile ordinary C code to SIMD architecture instructions.)
In this case, the compiler is indeed smart enough to hangle’Vé would like to acknowledge the work of Josh Blum and

the conversion using SSE instructions. Because conjugatM'Ck Foster from Ettus Research, LLC for their contribuson
is simply flipping the sign bit of the imaginary part, cedo the build system and _automatic tgst and profiling tool for
appears to have no trouble efficiently unrolling the loopheig VOLK- The use of VOLK in GNU Radio would not have been

times and using the SIMD ‘xorps’ instruction (XOR singleP0Ssible without their help.
precision floating point values) along with the appropriate REFERENCES
SIMD load and store calls. Handling the SIMD in-compile[) —
. . . 1] www.spiral.net/software/viterbi.html

and performing the loop unrolling without any extra VOLKp] cmake.org
overhead has, in this case, proved slightly more efficient. [3] code.entropywave.com/orc

; M. A. Greene, “Pentium(R) processor with MMX(TM) tecHogy per-

The r_esults fqr the processor shown here, an Int(_al i7 876 formance.” IEEE Proc. Compcon, 1997, pp. 263 - 267,

do not include information about newer Intel AVX instruc{s) p. Naishlos, “Autovectorization in GCC,” Proc. GCC Déwgers Summit,
tions. Performing the same tests using a newer 'Sandybridge 2004.
processor (i7 2620M) shows the same trends in both the
v3.5.2 and VOLK-enabled GNU Radio tests. A few gains in

performance from one generation to the next stood out. With

V. CONCLUSIONS ANDFUTURE WORK

109

% Improvement over v3.5.1 [1E+09 items]

% Improvement over v3.5.1 [1E+09 items]

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

600

(=]

500
400
300
200
100
F- e - W . m |

N v3.5.2
N volk

Fig. 2.

600

Improvements for the new scheduler in v3.5.2 and VOhHKype conversion blocks versus GNU Radio v3.5.1.

500

400

=10

300
200
100
il

H v3.5.2
B volk

&
Rl

Fig. 3. Improvement of new scheduler and VOLK for simple milicks from GNU Radio 3.5.1.

110

